基于 1.06 µm 波长的空间合作目标及碎片 高精度激光测距试验^{*}

孟文东¹⁾²⁾³⁾ 张海峰²⁾³⁾ 邓华荣²⁾ 汤凯²⁾ 吴志波²⁾³⁾ 王煜蓉¹⁾ 吴光^{1)†} 张忠萍^{2)3)‡} 陈欣扬²⁾

(华东师范大学精密光谱科学与技术国家重点实验室,上海 200062)
 2)(中国科学院上海天文台,上海 200030)
 3)(中国科学院空间目标与碎片观测重点实验室,南京 210008)
 (2019 年 8 月 27 日收到; 2019 年 10 月 16 日收到修改稿)

常规卫星激光测距大多数采用 532 nm 波长激光,但受激光能量和大气透过率低等瓶颈制约,在微弱目标探测如碎片激光测距、月球激光测距中使用难度较大.本文介绍了基于 1.06 µm 波长的激光测距技术,分析了 1.06 µm 测距技术在激光能量、大气传输、背景噪声、单光子探测等方面相对于 532 nm 激光测距的优势,分析了其应用于微弱目标激光测距的前景,提出了针对 1.06 µm 激光测距系统的改造方案,在上海天文台 532 nm 卫星激光测距系统的基础上,完成了系统改造,国内首次利用 1.06 µm 增强的 InGaAs 探测器实现对合作目标的高精度厘米级激光测距,证明了 1.06 µm 波长激光测距技术在系统噪声和测量效率等方面的优势,并且实现了该波长对 1500 km 空间碎片目标的高精度激光测距,为未来远距离微弱目标高精度近红外波段激光测距提供了紧凑、低成本、易操作的测量技术方案.

关键词:卫星激光测距,空间碎片探测,近红外,单光子探测 PACS: 95.85.Jq, 42.62.Eh, 42.66.Lc, 06.60.Jn

DOI: 10.7498/aps.69.20191299

1 引 言

卫星激光测距 (satellite laser ranging, SLR) 是目前卫星单点测距精度最高的一种技术^[1],目前 单次测量精度已经达到亚厘米量级,可对雷达进行 精确的校验、分析设备长期稳定度特性等,广泛应 用在卫星精密定轨^[2]、确定地球自转参数^[3,4]、建立 和维护全球地球参考框架^[5,6]以及实现全球范围的 高精度时间传递^[7]等方面.近年来,随着航天活动 的增加,空间碎片的监测和预警已经受到各航天大 国的高度重视¹⁸,高精度远距离小尺寸的空间碎片 测距需求迫切.鉴于激光测距高精度低误差的特性,空间碎片激光测距已经成为高精度碎片测量的 一项重要手段.由于空间碎片为漫反射目标,地面 能够接收到的回波信号非常微弱,测距难度很大. 为了提高探测能力,空间碎片激光测距多采用大口 径望远镜、高效率低噪声的单光子探测器及高功率 激光器.

目前,中国科学院上海天文台、云南天文台、 长春人造卫星观测站在原有卫星激光测距系统基础上,使用高功率激光器,已实现对近距离

^{*} 中国科学院青年创新促进会 (会员号: 2018303)、中国科学院国防创新基金 (批准号: CXJJ-16S009) 和国家自然科学基金 (批准号: U1231107, U1631240, 11774095, 11804099) 资助的课题.

[†] 通信作者. E-mail: gwu@phy.ecnu.edu.cn

[‡] 通信作者. E-mail: zzp@shao.ac.cn

^{© 2020} 中国物理学会 Chinese Physical Society

(500-2600 km)、截面积 0.3-20 m² 的空间非合 作目标激光测距^[9-11]. 而对于远距离 (> 2600 km)、 小尺寸 (直径 < 10 cm)的空间碎片测距需采用更 大能量、更高质量的激光源以及更大口径望远镜. 常规卫星激光测距采用 532 nm 波长,由于卫星端 激光反射器的反射效率达到 90% 以上, 因此地面 接收到的光子数较多,激光处于可见光波段,光路 调试相对容易,可见光波段的单光子探测技术成熟 且效率高,且 532 nm 波长激光器技术成熟,因此 大部分卫星激光测距采用 532 nm 波长. 532 nm 激光由 1.06 µm 激光倍频产生, 由于加入 了倍频器件,其单脉冲能量、功率及稳定度、寿命 等均受倍频器件制约,难以实现较大功率的发射. 相比较而言, 1.06 µm 激光器能够获得较大单脉冲 能量、功率、稳定度,该波长的空间背景噪声小于 可见光, 且大气透过率也优于 532 nm 波长, 因此 对于传统激光测距台站,利用 1.06 µm 波长激光测 量是提升系统测量能力的一种经济简单易行且有 效的途径.

国际上, 1991 年德国 Wettzell 天文台激光测 距站为开展大气折射改正研究, 曾开展过基于 1.06 μm 和 532 nm 的双波长激光测距^[12], 并成功获得了 对 LAGEOS 卫星的 1.06 μm 波长激光测距数据. 法国 Grasse 天文台于 2016 年对激光器进行了升 级改造, 实现了激光测月, 证明了 1.06 μm 激光测 距背景噪声小的巨大优势^[13]. 空间碎片激光测距 方面, 澳大利亚 Mt Stromlo 激光测距站采用 1.8 m 口径望远镜, 使用 50 Hz, 100 W 的 1.06 μm 波长激光器成功实现了对尺寸小于 10 cm 空间碎 片目标的测距, 测距精度优于 1 m, 获得了良好测 量效果^[14].

国内研究方面,2016年云南天文台利用两个 完全独立的望远镜分别进行 1.06 μm 激光发射和 接收,利用 40 W 激光器和超导纳米线单光子探测 器实现了对合作目标的探测,测距精度约为 7 cm^[15],然而其系统较为复杂,整体效率很低.

本文分析了 532 nm 和 1.06 μm 激光测距在 激光功率、大气透过率、目标反射效率等方面的差 异,论述了 1.06 μm 激光用于微弱目标测距的优势; 针对 1.06 μm 测距系统的难点给出了解决方案,并 对上海天文台 532 nm 常规激光测距系统进行了 改造,建立了基于InGaAs (Indium-Gallium-Arsenide) 探测器的紧凑型收发分离的 1.06 μm 激光测距系 统,实现了多圈次 1.06 μm 合作目标及空间碎片激 光测距,这也是国内首次利用 InGaAs 近红外波段 探测器开展的厘米级的 1.06 μm 高精度高效率激 光测距试验.

2 1.06 µm 波长激光测距优势分析

出射光子数优势: Nd:YAG (Neodymiumdoped Yttrium Aluminum Garnet) 激光器以其增 益高、阈值低、量子效率高、热效应小、机械性能良 好、适合各种工作模式(连续、脉冲)等特点,是常 规卫星激光测距使用最多的激光器.其中,532 nm 激光就是由 Nd:YAG 激光器的基频 1.06 µm 激光 经过倍频后得到的. 由于大部分倍频晶体的效率 在 50%—70%, 因此在产生 532 nm 激光的过程中, 一半左右的能量会损失掉. 而且, 倍频晶体难以承 受大功率的激光输出,其稳定性、寿命、光束质量 等均会受到影响.如能采用 1.06 μm 激光,则摆脱 了倍频晶体对激光器性能的限制和影响.一方面激 光功率可以增加一倍左右;另一方面,相同功率激 光, 1.06 µm 波长光子数可以增加一倍. 这样同一 台激光器,采用1.06 µm 波长,其产生的光子数是 532 nm 的 4 倍左右.

大气透过率优势: 在激光测距过程中, 大气透 过率损耗是一个较大的损耗. 测距观测仰角不同导 致的大气厚度差异使得大气损耗产生差异. 大气单 程透过率和观测仰角满足如下公式^[16]:

$$\tau\left(\lambda,\theta\right) = \tau\left(\lambda\right)_{90^{\circ}}^{\sec(\pi/2 - \theta)} = \tau\left(\lambda\right)_{90^{\circ}}^{\sec(\theta_{zen})},\qquad(1)$$

其中 τ 为大气单程透过率, λ 为光的波长, θ 为观 测仰角, θ_{zen} 为天顶角.根据(1)式进行计算,图1(a) 为根据不同仰角情况下1.06 µm和532 nm的单 程大气透过率情况,图1(b)为两者单双程大气透 过率比例曲线,可见,从模型公式上,双程大气透 过率比例在仰角20°情况下可达3倍多,使用1.06 µm 波长对提高系统效率作用显著.

Degnan^[17]于 1993年发表的文章中也说明了 不同波长的光在观测仰角不同的条件下的大气透 过率情况, 1.06 μm 波长光在垂直高度上的透过率 约为 0.991, 532 nm 波长光的透过率约为 0.815; 在天顶角为 70° (对应观测仰角 20°)时, 1.06 μm 的大气单程透过率为 532 nm 的 1.87 倍, 双程透过 率为 3.5 倍, 和公式计算结果基本相符.

图 1 (a) 1.06 μm 和 532 nm 单程大气透过率随不同仰角 变化模型曲线; (b) 1.06 μm 和 532 nm 单双程大气透过率 比随不同仰角变化的比例曲线

Fig. 1. (a) The curve of one-way atmospheric transmissivity at 1.06 μ m and 532 nm with different elevation angles; (b) the scale curve of one-way and two-way atmospheric transmissivity at 1.06 μ m and 532 nm with different elevation angles.

单光子探测器: 532 nm 波长对应的 Si APD (Silicon Avalanche Photodiode) 单光子探测器发 展成熟,探测效率超过50%,并且暗计数和后脉冲 噪声低,但对于 1.06 µm 波长, Si APD 的探测效 率仅有 3% 左右; 而近红外增强型 InGaAs APD (Indium-Gallium-Arsenide Avalanche Photodiode) 单光子探测器在该波段能获得 20% 的探测效率[18], 但是由于材料特性和工艺问题, 探测器的暗噪声和 后脉冲较大,为了抑制暗噪声对测量的影响,探测 靶面直径通常小于 100 μm, 但仍然适用于单光子 激光测距. 超导纳米线单光子探测器在近红外波段 探测效率可超过 50%[19], 暗计数低, 没有后脉冲影 响,但由于其光纤耦合的特性,应用于卫星激光测 距有一定难度,上海天文台和云南天文台等单位正 在发展基于超导纳米线单光子探测器的卫星激光 测距技术[15,20],已实现对卫星的激光测距,但其系 统庞大,耦合效率较低,测距所需成本较高,目前 尚无法大规模开展应用.

目标反射率:对于大部分常规激光测距角反射器,其设计波长为 532 nm,对 1.06 μm 波长的反射效率不做设计,因此合作目标对 1.06 μm 波长的反射率通常不如 532 nm;且由于角锥的衍射发散角和波长成正比,因此合作目标对 1.06 μm 光反射的

面积大,单位回波强度弱.但有研究表明对于大部分的空间碎片目标,其漫反射效率1.06 μm 波长反 而强度较大^[21],在碎片测距中也可以近似认为和 532 nm 漫反射效率一致.

太阳光谱强度: 1.06 μm 波长的太阳辐照的强 度较小, 在地基激光测距中, 海平面高度的太阳辐 射强度在 532 nm 波长为 1.37 W·m⁻²·nm⁻¹, 而在 1.06 μm 波长则仅有 0.62 W·m⁻²·nm^{-1[22]}, 其噪声 强度仅为 532 nm 的 45%, 有利于白天测量.

回波光子数和探测概率分析:根据碎片激光测距的回波光子数公式^[17],

$$n_0 = \frac{\lambda \eta_{\mathsf{q}}}{hc} \cdot \frac{E_{\mathsf{t}} A_{\mathsf{r}} \sigma}{4\pi \theta_{\mathsf{t}}^2 R^4} \cdot T^2 \cdot K_{\mathsf{t}} \cdot K_{\mathsf{r}} \cdot \alpha, \qquad (2)$$

式中 n_0 为测距系统可接收到的平均光电子数, λ 为发射激光的波长, η_q 为回波光子探测器探测效 率, h 为普朗克常数, c 为光速, E_t 为激光单脉冲能 量, A_r 为接收系统有效接收面积, σ 为空间目标反 射横截面积, θ_t 为发射激光束发散角, R 为目标径 向距离, T 为光束单程大气透过率, K_t 和 K_r 分别 为发射和接受系统效率, α 为系统衰减因子 (包括 大气抖动、湍流等).

(2) 式中, 1.06 μm 和 532 nm 波长两者双程大 气透过率比值在仰角 20°—70°内约为 1.52—3.14 倍, 假设 1.06 μm 和 532 nm 测距系统的光学系统 性能相同, 探测器效率相同, 空间目标反射横截面 积相同, 采用同一激光器产品, 1.06 μm 激光单脉 冲能量为 532 nm 的 2 倍以上, 则理论上碎片探测 时, 1.06 μm 回波光子数将达到 532 nm 回波光子 数的 6.06—12.55 倍.

对于有角反射器合作目标的卫星激光测距,其 光子回波数方程公式^[23]为

$$N_{\rm s} = \frac{16 \cdot E_{\rm t} \cdot S \cdot A_{\rm s} \cdot A_{\rm r} \cdot K_{\rm t} \cdot K_{\rm r} \cdot T^2 \cdot \eta_{\rm q} \cdot \alpha}{\pi^2 \cdot R^4 \cdot \theta_{\rm t}^2 \cdot \theta_{\rm s}^2}$$
$$= \frac{16 \cdot E_{\rm t} \cdot \lambda \cdot A_{\rm s} \cdot A_{\rm r} \cdot K_{\rm t} \cdot K_{\rm r} \cdot T^2 \cdot \eta_{\rm q} \cdot \alpha}{h \cdot c \cdot \pi^2 \cdot R^4 \cdot \theta_{\rm t}^2 \cdot \theta_{\rm s}^2}, \quad (3)$$

式中 N_s 为卫星回波在测距系统接收光敏面上产生 的平均光电子数; E_t 为激光单脉冲能量; S 为每焦 耳能量的光子数, 进而可用发射激光的波长 λ , 普 朗克常数 h, 光速 c 来表示; A_s 为卫星上反射器的 有效面积; K_t 为发射系统的效率; T 为单程大气透 过率; η_q 为回波光子探测器探测效率; α 为衰减因 子 (包括卫星反射器效率、大气抖动、湍流等影响); R 为卫星距离; θ_t 为激光光束发散角; θ_s 为卫星反 射器的发散角.

相比较于碎片回波光子数方程 (2) 式, (3) 式 中增加了 θ_s即卫星角反射器发散角的影响,由于 目前大部分激光反射器针对 532 nm 波长设计,如 采用 1.06 μm 波长测距,其发射角将变为 532 nm 波长的 1.3 倍,因此对于合作目标激光测距, 1.06 μm 回波光子数是 532 nm 回波光子数的 3.59—7.42 倍.

3 卫星激光测距系统

上海天文台当前的激光测距系统如图 2 所示, 我们对激光发射系统、激光接收系统、激光器、导 星和光束监视系统、单光子探测系统均进行了研究 和改造,使之能够适应常规和碎片的 1.06 μm 的卫 星激光测距.

其中,发射和接收系统均镀 1.06 µm 及 532 nm

高反或增透膜,激光器通过移除倍频晶体或将输出 激光分束输出的方式实现. 由于针对可见光的单光 子探测器在近红外波段效率不高,我们采用了由盖 格模式 InGaAs APD 器件研制的 1.06 µm 波段增 强的单光子探测器,该探测器探测效率和时间抖动 分别大约为 20% 和 70 ps. 对于导星和光束监视, 由于 1.06 µm 波长的大气后向散射十分微弱, 因此 对低功率激光发射的合作目标激光测距,我们利用 全反射镜将望远镜接收的全部 1.06 µm 光送入近 红外 CCD 来进行光束成像,并通过全反镜的平移 使得回波在光束监视和光子探测两种模式间切换, 完成测距操作,其中光束平移镜实现了优于1"的 平移精度;对于高功率激光发射的碎片测距,则采 用分光镜将部分接收光送入 CCD 用于监视, 大部 分光进入光子探测器进行测距,此时激光的光束监 视和回波接收可以同时完成.

图 2 上海天文台 1.06 µm 激光测距系统和改造框图 Fig. 2. Diagram of 1.06 µm SLR system in Shanghai Astronomical Observatory.

4 实验结果与讨论

系统改造完成后,针对合作目标开展了 1.06 μm 激光测距试验.其中上海天文台常规测试用的激光 器在 532 nm 的功率为 0.8—1 W,移除倍频晶体 后,1.06 μm 波长功率约为 1.6—1.8 W,脉宽 40 ps; 星象和激光光束监视采用近红外波长的 CCD 完 成,在望远镜所有接收的 1.06 μm 波长光送入 CCD 的情况下,实现了对光尖和星象的同步监视, 如图 3 所示,可以较为清晰地呈现激光光束指向, 并对其进行精准控制.

在合作目标卫星激光测距中,532 nm 波长的 Si APD 单光子探测器的探测效率约为 20%,时间 抖动约为 25 ps; 1.06 μm 波长的 InGaAs APD 单光子探测器探测效率也约为 20%,时间抖动约 为 70 ps. 我们在 2016 年 7月前后采用 InGaAs APD 单光子探测器,利用 1.06 μm 波长对轨道高 度 400—36000 km 合作目标成功开展了高精度测 距,这也是国内首个利用近红外 InGaAs 探测器实 现的高精度高效率的 1.06 μm 合作目标激光测距 试验.

图 3 1.06 µm 激光测距系统光尖监视图

Fig. 3. Monitoring picture of the light-cone in 1.06 μm laser ranging system.

1.06 μm 合作目标激光测距的结果如表 1 所 列,同时我们也将观测仰角类似的同类型卫星的 532 nm 常规观测数据进行比对.对于大部分相同 类型的卫星,1.06 μm 的测量效率均比 532 nm 有 较大程度的提高;而由于激光器倍频晶体、角反射 器综合发散角、以及较为主要的单光子探测器精度 的影响,1.06 μm 测距精度略差.在系统噪声方面, 1.06 μm 则表现出了明显的测距优势.

对于碎片目标而言,由于回波信号较弱,通常 采用大功率激光器进行测距,激光后向散射强度很 大,仅利用望远镜采集的部分光即可实现对光尖的 监视;利用上述系统,通过光路中镜片的更换,我 们实现了同时对空间碎片测距的光尖监视和回波 测量功能,使得碎片测距更直观易行.利用这套系 统于 2016 年 8 月进行了针对空间碎片目标的观 测,测距界面如图 4 所示.测距目标为距离 1500 km 左右的火箭残骸,目标大小为13.2 m²;激光器输 出波长为1.06 μm,重复频率为200 Hz,激光功率 为40 W,脉冲宽度为5.5 ns.本次空间碎片测距的 测量效率为3.7%,测距精度约为1.6 m.

由于空间碎片测距过程中后向散射较为强烈, 而 InGaAs APD 单光子探测器光损伤阈值小,此 次空间碎片测量完成后, InGaAs APD 器件损坏. 随后,开展了对探测器的修复工作,同时设计了一 套新的后向散射规避系统,进行了测量终端箱及激 光发射系统的改造.

2019年1月,利用1.06 μm波长开展激光测距的试验再次开展,此次测量中系统激光功率为532 nm波长0.7 W,1.06 μm波长1.2 W;系统收发效率分别为532 nm波长55%和60%,1.06 μm波长47.7%和57.2%,两个波长的收发效率基本相同.这次试验重点开展的是同样条件下对相同目标的比对测距,主要目标为远距离的地球中高轨道合作目标.选取了多颗我国北斗(BDS,Beidou Navigation Satellite System)及俄罗斯格洛纳斯(GLONASS)导航卫星进行了两种波长的比对性测距,试验情况如表2所示.

本次测距采用修复后的 InGaAs 单光子探测器, 其探测效率和 532 nm 单光子探测器效率相当, 测距系统对两个波长的收发效率类似; 试验在同一 台激光测距望远镜上利用不同波长先后对同一颗 卫星目标进行了测距, 在观测环境和系统情况相似 的条件下, 1.06 µm 波长测距相对于 532 nm 波长

Table 1. The comparison table of cooperative target laser ranging at 1.06 μm and 532 nm.									
圈次	仰角均值/(°)	轨道高度/km	Point	Point 测距精度/mm		噪声密度/个·s ⁻¹ ·m ⁻¹			
$1.06 \ \mu m$									
16072019.LES	37	1450	7641	20.5	18.64%	0.622			
16072019. G1 48		35786	489	14.9	0.15%	0.498			
16072020.G18	56	19140	9668	33.1	1.83%	0.680			
16072020.G17	51	19140	715	31.7	0.22%	0.700			
16072019. I7	51	35786	3325	18.9	1.44%	0.646			
16072018.G02	65	19140	9798	23.6	5.10%	0.583			
532 nm									
17091802.LES	37	1450	1037	6.4	3.99%	6.574			
17091715.G1	48	35786	1713	10.5	0.14%	8.114			
17082218.G18	54	19140	4375	_	0.75%	_			
17082318.G17	51	19140	1323	13.8	2.32%	1.126			
17072720.I5	51	35786	1302	12.3	0.30%	1.616			
17072216.G02	65	19140	3026	11.7	0.37%	6.015			

表 1 2016 年合作目标激光测距 1.06 µm 和 532 nm 波长测距结果和比对表

图 4 1.06 μm 开展碎片激光测距实时测量界面截图

Fig. 4. Screenshot of real time 1.06 $\mu\mathrm{m}$ debris laser ranging measurement interface.

	表 2	2019 年合作目标导航卫星激光测距 1.06 μm 和 532 nm 波长测距结果和比对表
Table	2.	The comparison table of navigation satellites laser ranging at 1.06 μm and 532 nm in 2019.

要)/~	组别	仰角均值	轨道高度	点数	测量时长	测距精度	回波率	噪声密度
固八		/(°)	$/\mathrm{km}$		$/{\rm min}$	/mm		$/{\bf \uparrow \cdot s^{-1} \cdot m^{-1}}$
1001171707 (1191	G121-1064-2	45	19,140	1542	1.2	23.2	2.142%	0.523
1901171707.G121	G121-532-1	45		380	2.1	20.1	0.302%	3.36
1001171710 Is	I5-1064-B-1	53	35,786	96	0.783	21.4	0.204%	0.65
1901171719.15	I5-532-2	55		137	2.283	16	0.1%	3.24
1001171744 01	G1-1064	49	35, 786	450	2	11.5	0.381%	0.51
1901171744.GI	G1-532	49		145	2.217	7.9	0.109%	3.15

三组数据分别为对俄罗斯Glonass-121卫星,中国北斗IGSO-5卫星,中国北斗GEO-1卫星的观测数据,每组数据的第一行为利用 1.06 μm波长的测距结果,第二行为利用532 nm波长的测距结果.

测距,三圈不同的中高轨卫星观测时天空的背景噪 声比值分别为 1/5.02, 1/6.40 及 1/6.12, 天空背景 噪声强度显著降低; 测距回波效率倍率分别为 7.1, 2.0 和 3.5, 测距回波效率增强明显.

此次对合作目标的比对测试利用 1.2 W 的 1.06 μm 激光器实现了对地球同步轨道卫星的近 红外波长测距,比 532 nm 波长回波效率最高提升 至 7 倍,而天空背景及暗噪声的综合影响仅为 532 nm 波长的 1/5,进一步明确了 1.06 μm 波长 在远距离微弱目标探测中的优势.

在测距精度方面,此次 1.06 μm 波长的表现略 差,主要影响因素有如下方面:同一台激光器倍频 前后激光脉冲展宽差异,这方面的差距可以在今后 使用的激光器研制过程中予以要求和控制;目前测 距的合作目标均为按 532 nm 波长测距设计,其中 二面角特性对于 1.06 μm 波长展宽较多,在一定程 度上影响 1.06 μm 测量精度,今后对于高精度需求 的远距离微弱目标,可针对 1.06 μm 波长进行合作 目标设计,可以将此方面影响降到最小;目前采用 的 InGaAs 单光子探测器测量精度约为 70 ps,相 对于 532 nm 常规使用的 Si APD 探测器的 25 ps 有差异.

未来通过对上述问题的研究和解决,利用本文 目前经典的紧凑型收发分离的单台激光测距望远 镜,可以更便捷、低成本地实现对远距离微弱目标 的近红外波长高精度测量,获得测量能力的较大幅 度提升,同时几乎不增加测量系统的观测复杂度和 难度.

5 结 论

在上海天文台原有的 532 nm 卫星激光测距 系统基础上,针对 1.06 μm 波长实施系统改造,包 括重新镀膜望远镜收发系统、发展 1.06 μm 激光监 视方法、采用 InGaAs APD 高精度近红外单光子 探测器,实现了常规合作目标高精度测距及空间碎 片激光测距.实验表明,利用 InGaAs APD 为探测 终端的 1.06 μm 波长激光测距系统在系统噪声、测 量效率方面均比 532 nm 波长有较大优势,而目前 主要影响其测量精度的单光子探测器,也有望在近 期实现测量精度的提升.

对于空间碎片测距而言, 1.06 µm 波长可以更 容易实现激光发射能量和功率的提升,系统性能更 加稳定,非常有助于提高碎片测量能力;1.06 µm 波长回波光子数多的特性有利于开展对更远、更小 碎片目标的探测; 而整个测量系统低噪声的特点则 有利于预报精度较差的空间碎片目标的搜索,也更 有利于未来开展白天空间碎片激光测距的技术研 究;本文实现的基于 InGaAs APD 单光子探测器 的 1.06 μm 空间碎片激光测距系统还具有系统紧 凑、小改动、易操作、低成本等特点,更有利于系统 新建或对现有激光测距望远镜的改造,进而建立较 大规模的碎片激光测距网,开展针对距离更远或尺 寸更小的空间碎片目标的联合观测; 而未来 1.06 μm 探测器测量精度的提升则为开展厘米尺度空间碎 片激光测距提供了可能,对小尺寸碎片目标的高精 度测距定轨,和空间碎片目标的高精度态势分析和 研究具有重要意义.

感谢国防科工局项目为本文工作的开展提供指导和支持.

参考文献

- Hu J F 2003 Ph. D. Dissertation (Shanghai: Shanghai Astronomical Observatory, Chinese Academy of Sciences) (in Chinese) [扈荆夫 2003 博士学位论文 (上海: 中国科学院研究生 院 (上海天文台))]
- [2] Qin X P 2003 M.S. Thesis (Zhengzhou: Information Engineering University) (in Chinese) [秦显平 2003 硕士学位论文 (郑州: 中 国人民解放军信息工程大学)]
- [3] Yang F M, Tan D T, Xiao Z K, Li Z Y, Lu W H, Chen W Z, Cai S F, Chen F X, Zhang Z P, Hu Z Q 1986 *Chin. Sci. Bull.* 31 1161 (in Chinese) [杨福民, 谭德同, 肖炽焜, 李振宇, 陆文虎, 陈婉珍, 蔡世福, 陈富祥, 张忠平, 胡振琪 1986 科学通报 31

1161

- [4] He M F, Tapley B D, Eanes R J 1980 Scientia Sinica Physica, Mechanica & Astronomica 25 636 (in Chinese) [何妙 福, Tapley B D, Eanes R J 1980 中国科学: 物理学 力学 天文 学 25 636]
- [5] Ding J, Qu F, Li Q, Cheng B H 2010 Science of Surveying & Mapping 35 5 (in Chinese) [丁剑, 瞿锋, 李谦, 程伯辉 2010 测 绘科学 35 5]
- [6] Zhu X H, Yang L, Sun F P, Wang R 2014 Acta Geod. Cartogr. Sin. 43 240 (in Chinese) [朱新慧, 杨力, 孙付平, 王刃 2014 测绘学报 43 240]
- [7] Degnan J 2002 J. Geodyn. **34** 551
- [8] Liu J, Wang R L, Zhang H B, Xiao Z 2004 Chin. J. Space Sci. 24 462 (in Chinese) [刘静, 王荣兰, 张宏博, 肖佐 2004 空 间科学学报 24 462]
- [9] Zhang Z P, Cheng Z E, Zhang H F, Deng R H, Jiang H 2017 Infrared Laser Eng. 46 8 (in Chinese) [张忠萍, 程志恩, 张海峰, 邓华荣, 江海 2017 红外与激光工程 46 8]
- [10] Song Q L, Liang Z P, Dong X, Han X W, Fan C B 2016 Opt.
 & Precision Eng. 24 175 (in Chinese) [宋清丽,梁智鹏,董雪, 韩兴伟, 范存波 2016 光学精密工程 24 175]
- [11] Li Z L, Zhang H T, Li Y Q, Fu H L, Zhai D S 2017 Infrared Laser Eng. 46 269 (in Chinese) [李祝莲, 张海涛, 李语强, 伏红 林, 翟东升 2017 红外与激光工程 46 269]
- [12] Schreiber U, Haufe K H, Dassing R 1993 8th International Workshop on Laser Ranging Instrumentation Annapolis, MD USA, May 18-22, 1992 p7
- [13] Courde C, Torre J M, Samain E, Martinot-Lagarde G, Aimar M, Albanese D, Exertier P, Feraudy D, Fienga A, Mariey H, Métris G, Viot H, Viswanathan V. Astron. Astrophys. 602 A90
- [14] Smith C, Greene B 2006 The Advanced Maui Optical and Space Surveillance Technologies Conference Maui, Hawaii, September 10-14, 2006 id.E86
- [15] Xue L, Li Z L, Zhang L B, Zhai D S, Li Y Q, Zhang S, Li M, Kang L, Chen J, Wu P H, Xiong Y H 2016 Opt. Lett. 41 3848
- [16] Shell J R 2010 Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference Maui, HI, USA, September 14–17, 2010 p E42
- [17] Degnan J J 1993 Contributions of Space Geodesy to Geodynamics: Technology 25 133
- [18] Princeton Lightwave Inc. https://sphotonics.ru/upload/iblock/ 21c/pga_series_single_photon_counting_avalanche_photodiode.pdf [2019-8-20]
- [19] Zhang W J, You L X, Li H, Huang J, Lv C L, Zhang L, Liu X Y, Wu J J, Wang Z, Xie X M 2017 Sci. Chin. Phys. Mechanics & Astronomy 60 120314
- [20] Li H, Chen S J, You L X, Meng W D, Wu Z B, Zhang Z P, Tang K, Zhang L, Zhang W J, Yang X Y, Liu X Y, Wang Z, Xie X M 2016 Opt. Express 24 3535
- [21] Jorgensen K, Jarvis K S, Hamada K, Parr-Thumm T L, Africano J L, Stansbery E G 2003 Proc. of the 54th International Astronautical Congress Bremen, Germany, September 29–October 3, 2003 p1
- [22] Victoria M, Domínguez C, Askins S, Antón I, Sala G 2012 Jpn. J. Appl. Phys. AM15D 10ND06
- [23] Yang F M, Xiao Z K, Chen W Z, Zhang Z P, Tan D T, Gong X D, Chen J P, Huang L, Zhang J H 1998 Sci. Chin. (Series A) 28(11) 1048 (in Chinese) [杨福民, 肖炽焜, 陈婉珍, 张忠萍, 谭德同, 龚向东, 陈菊平, 黄力, 章建华 1998 中国科学(A辑) 28(11) 1048]

1.06 µm wavelength based high accuracy satellite laser ranging and space debris detection^{*}

Meng Wen-Dong¹⁾²⁾³⁾ Zhang Hai-Feng²⁾³⁾ Deng Hua-Rong²⁾ Tang Kai²⁾ Wu Zhi-Bo²⁾³⁾ Wang Yu-Rong¹⁾ Wu Guang^{1)†} Zhang Zhong-Ping^{2)3)‡} Chen Xin-Yang²⁾

1) (State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China)

2) (Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China)

 3) (Key Laboratory of Space Object and Debris Observation, Chinese Academy of Sciences, Nanjing 210008, China) (Received 27 August 2019; revised manuscript received 16 October 2019)

Abstract

Classical satellite laser ranging (SLR) technology based on 532 nm wavelength usually adopts low energy laser to measure cooperative objects. However, for a very weak target, such as debris and lunar reflector arrays, laser ranging system should have much stronger detection capability than the laser ranging system for traditional application. A common way to improve system detection capability is to use high energy laser. With an additional frequency doubling crystal, it is more difficult to make a high energy laser based on 532 nm than that based on $1.06 \,\mu\text{m}$, which restricts the improvement of system detection capability, and also gives rise to the short lifetime, poor system stability problems. Compared with 532 nm laser, the 1.06 μ m laser has many advantages of high laser energy and power, high atmospheric transmissivity, and low background noise, thereby making it an ideal substitution for the traditional 532 nm SLR system. In this paper, we comparatively analyze the above-mentiond advantages of the $1.06 \ \mu m$ laser and other system's key parameters such as detector efficiency and target reflection efficiency, calculate the echo photons one can obtain, and establish a $1.06 \ \mu m$ laser ranging system based on the existing 532 nm SLR at Shanghai Astronomical Observatory. Owing to the using of an InGaAs single photon detector, the system turns very compact, low cost, easy-to-be-installed and has almost no additional operation complexity than the 532 nm system. With this system, the high precision 1.06 µm laser ranging for cooperative objects based on InGaAs detector is carried out for the first time in China, and a ranging for space debris 1500 km away can also be realized. The ranging experiment shows with the same laser, SLR using $1.06 \ \mu m$ output reaches a detection efficiency of 7 times the detection efficiency the SLR using 532 nm output reaches, and the background noise only 1/5. This approves the advantages and feasibility of 1.06 µm system, and also shows its great potential application prospects in the high precision weak target laser detection in the day and night time. This paper provides a very easy operation, high compact and low cost method for the future high precision weak target laser ranging.

Keywords: satellite laser raging(SLR), space debris detection, near infrared, single photon detection PACS: 95.85.Jq, 42.62.Eh, 42.66.Lc, 06.60.Jn DOI: 10.7498/aps.69.20191299

^{*} Project supported by the Youth Innovation Promotion Association of CAS (ID. 2018303), the National Defense Innovation Fund of the Chinese academy of sciences, China (Grant No. CXJJ-16S009), and the National Natural Science Foundation of China (Grant Nos. U1231107, U1631240, 11774095, 11804099).

[†] Corresponding author. E-mail: gwu@phy.ecnu.edu.cn

[‡] Corresponding author. E-mail: zzp@shao.ac.cn